Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Environ Res ; 246: 118116, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38184064

RESUMO

In the light of growing urbanization and projected temperature increases due to climate change, heat-related mortality in urban areas is a pressing public health concern. Heat exposure and vulnerability to heat may vary within cities depending on structural features and socioeconomic factors. This study examined the effect modification of the temperature-mortality association of three socio-environmental factors in eight Swiss cities and population subgroups (<75 and ≥ 75 years, males, females): urban heat islands (UHI) based on within-city temperature contrasts, residential greenness measured as normalized difference vegetation index (NDVI) and neighborhood socioeconomic position (SEP). We used individual death records from the Swiss National Cohort occurring during the warm season (May to September) in the years 2003-2016. We performed a case time series analysis using conditional quasi-Poisson and distributed lag non-linear models with a lag of 0-3 days. As exposure variables, we used daily maximum temperatures (Tmax) and a binary indicator for warm nights (Tmin ≥20 °C). In total, 53,593 deaths occurred during the study period. Overall across the eight cities, the mortality risk increased by 31% (1.31 relative risk (95% confidence interval: 1.20-1.42)) between 22.5 °C (the minimum mortality temperature) and 35 °C (the 99th percentile) for warm-season Tmax. Stratified analysis suggested that the heat-related risk at 35 °C is 26% (95%CI: -4%, 67%) higher in UHI compared to non-UHI areas. Indications of smaller risk differences were observed between the low vs. high greenness strata (Relative risk difference = 13% (95%CI: -11%; 44%)). Living in low SEP neighborhoods was associated with an increased heat related risk in the non-elderly population (<75 years). Our results indicate that UHI are associated with increased heat-related mortality risk within Swiss cities, and that features beyond greenness are responsible for such spatial risk differences.


Assuntos
Temperatura Alta , Mortalidade , Masculino , Feminino , Humanos , Pessoa de Meia-Idade , Cidades/epidemiologia , Fatores de Tempo , Suíça/epidemiologia , Temperatura
3.
Artigo em Inglês | MEDLINE | ID: mdl-36981871

RESUMO

Defining health-based thresholds for effective heat warnings is crucial for climate change adaptation strategies. Translating the non-linear function between heat and health effects into an effective threshold for heat warnings to protect the population is a challenge. We present a systematic analysis of heat indicators in relation to mortality. We applied distributed lag non-linear models in an individual-level case-crossover design to assess the effects of heat on mortality in Switzerland during the warm season from 2003 to 2016 for three temperature metrics (daily mean, maximum, and minimum temperature), and various threshold temperatures and heatwave definitions. Individual death records with information on residential address from the Swiss National Cohort were linked to high-resolution temperature estimates from 100 m resolution maps. Moderate (90th percentile) to extreme thresholds (99.5th percentile) of the three temperature metrics implied a significant increase in mortality (5 to 38%) in respect of the median warm-season temperature. Effects of the threshold temperatures on mortality were similar across the seven major regions in Switzerland. Heatwave duration did not modify the effect when considering delayed effects up to 7 days. This nationally representative study, accounting for small-scale exposure variability, suggests that the national heat-warning system should focus on heatwave intensity rather than duration. While a different heat-warning indicator may be appropriate in other countries, our evaluation framework is transferable to any country.


Assuntos
Temperatura Alta , Mortalidade , Humanos , Temperatura , Estudos Cross-Over , Suíça/epidemiologia , Estações do Ano
4.
Environ Res ; 224: 115552, 2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-36822536

RESUMO

BACKGROUND: Fine particulate matter (PM2.5) is a well-recognized risk factor for premature death. However, evidence on which PM2.5 components are most relevant is unclear. METHODS: We evaluated the associations between mortality and long-term exposure to eight PM2.5 elemental components [copper (Cu), iron (Fe), zinc (Zn), sulfur (S), nickel (Ni), vanadium (V), silicon (Si), and potassium (K)]. Studied outcomes included death from diabetes, chronic kidney disease (CKD), dementia, and psychiatric disorders as well as all-natural causes, cardiovascular disease (CVD), respiratory diseases (RD), and lung cancer. We followed all residents in Denmark (aged ≥30 years) from January 1, 2000 to December 31, 2017. We used European-wide land-use regression models at a 100 × 100 m scale to estimate the residential annual mean levels of exposure to PM2.5 components. The models were developed with supervised linear regression (SLR) and random forest (RF). The associations were evaluated by Cox proportional hazard models adjusting for individual- and area-level socioeconomic factors and total PM2.5 mass. RESULTS: Of 3,081,244 individuals, we observed 803,373 death from natural causes during follow-up. We found significant positive associations between all-natural mortality with Si and K from both exposure modeling approaches (hazard ratios; 95% confidence intervals per interquartile range increase): SLR-Si (1.04; 1.03-1.05), RF-Si (1.01; 1.00-1.02), SLR-K (1.03; 1.02-1.04), and RF-K (1.06; 1.05-1.07). Strong associations of K and Si were detected with most causes of mortality except CKD and K, and diabetes and Si (the strongest associations for psychiatric disorders mortality). In addition, Fe was relevant for mortality from RD, lung cancer, CKD, and psychiatric disorders; Zn with mortality from CKD, RD, and lung cancer, and; Ni and V with lung cancer mortality. CONCLUSIONS: We present novel results of the relevance of different PM2.5 components for different causes of death, with K and Si seeming to be most consistently associated with mortality in Denmark.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Exposição Ambiental , Mortalidade , Humanos , Poluentes Atmosféricos/análise , Poluição do Ar/estatística & dados numéricos , Causas de Morte , Estudos de Coortes , Dinamarca/epidemiologia , Exposição Ambiental/análise , Exposição Ambiental/estatística & dados numéricos , Neoplasias Pulmonares/mortalidade , Níquel , Material Particulado/análise , Insuficiência Renal Crônica/mortalidade , Doenças Respiratórias/mortalidade , Zinco/análise
5.
Sci Total Environ ; 820: 153098, 2022 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-35041955

RESUMO

BACKGROUND: Many studies investigated the relationship between outdoor fine particulate matter (PM2.5) and cancer. While they generally indicated positive associations, results have not been fully consistent, possibly because of the diversity of methods used to assess exposure. OBJECTIVES: To investigate how using different PM2.5 exposure assessment methods influences risk estimates in the large French general population-based Gazel cohort (20,625 participants at enrollment) with a 26-year follow-up with complete residential histories. METHODS: We focused on two cancer incidence outcomes: all-sites combined and lung. We used two distinct exposure assessment methods: a western European land use regression (LUR), and a chemistry-dispersion model (Gazel-Air) for France, each with a time series ≥20-years annual concentrations. Spearman correlation coefficient between the two estimates of PM2.5 was 0.71 across all person-years; the LUR tended to provide higher exposures. We used extended Cox models with attained age as time-scale and time-dependent cumulative exposures, adjusting for a set of confounders including sex and smoking, to derive hazard ratios (HRs) and their 95% confidence interval, implementing a 10-year lag between exposure and incidence/censoring. RESULTS: We obtained similar two-piece linear associations for all-sites cancer (3711 cases), with a first slope of HRs of 1.53 (1.24-1.88) and 1.43 (1.19-1.73) for one IQR increase of cumulative PM2.5 exposure for the LUR and the Gazel-Air models respectively, followed by a plateau at around 1.5 for both exposure assessments. For lung cancer (349 cases), the HRs from the two exposure models were less similar, with largely overlapping confidence limits. CONCLUSION: Our findings using long-term exposure estimates from two distinct exposure assessment methods corroborate the association between air pollution and cancer risk.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Neoplasias , Poluentes Atmosféricos/análise , Poluição do Ar/análise , Exposição Ambiental/análise , Humanos , Neoplasias/induzido quimicamente , Neoplasias/epidemiologia , Material Particulado/análise
6.
Sci Total Environ ; 804: 150091, 2022 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-34517316

RESUMO

BACKGROUND: Ambient air pollution exposure has been associated with higher mortality risk in numerous studies. We assessed potential variability in the magnitude of this association for non-accidental, cardiovascular disease, respiratory disease, and lung cancer mortality in a country-wide administrative cohort by exposure assessment method and by adjustment for geographic subdivisions. METHODS: We used the Belgian 2001 census linked to population and mortality register including nearly 5.5 million adults aged ≥30 (mean follow-up: 9.97 years). Annual mean concentrations for fine particulate matter (PM2.5), nitrogen dioxide (NO2), black carbon (BC) and ozone (O3) were assessed at baseline residential address using two exposure methods; Europe-wide hybrid land use regression (LUR) models [100x100m], and Belgium-wide interpolation-dispersion (RIO-IFDM) models [25x25m]. We used Cox proportional hazards models with age as the underlying time scale and adjusted for various individual and area-level covariates. We further adjusted main models for two different area-levels following the European Nomenclature of Territorial Units for Statistics (NUTS); NUTS-1 (n = 3), or NUTS-3 (n = 43). RESULTS: We found no consistent differences between both exposure methods. We observed most robust associations with lung cancer mortality. Hazard Ratios (HRs) per 10 µg/m3 increase for NO2 were 1.060 (95%CI 1.042-1.078) [hybrid LUR] and 1.040 (95%CI 1.022-1.058) [RIO-IFDM]. Associations with non-accidental, respiratory disease and cardiovascular disease mortality were generally null in main models but were enhanced after further adjustment for NUTS-1 or NUTS-3. HRs for non-accidental mortality per 5 µg/m3 increase for PM2.5 for the main model using hybrid LUR exposure were 1.023 (95%CI 1.011-1.035). After including random effects HRs were 1.044 (95%CI 1.033-1.057) [NUTS-1] and 1.076 (95%CI 1.060-1.092) [NUTS-3]. CONCLUSION: Long-term air pollution exposure was associated with higher lung cancer mortality risk but not consistently with the other studied causes. Magnitude of associations varied by adjustment for geographic subdivisions, area-level socio-economic covariates and less by exposure assessment method.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Adulto , Poluentes Atmosféricos/análise , Poluentes Atmosféricos/toxicidade , Poluição do Ar/análise , Poluição do Ar/estatística & dados numéricos , Censos , Estudos de Coortes , Exposição Ambiental/análise , Exposição Ambiental/estatística & dados numéricos , Humanos , Material Particulado/análise , Material Particulado/toxicidade
7.
Ann Work Expo Health ; 66(5): 671-686, 2022 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-34935027

RESUMO

OBJECTIVES: The Network on the Coordination and Harmonisation of European Occupational Cohorts (OMEGA-NET) was set up to enable optimization of the use of industrial and general population cohorts across Europe to advance aetiological research. High-quality harmonized exposure assessment is crucial to derive comparable results and to enable pooled analyses. To facilitate a harmonized research strategy, a concerted effort is needed to catalogue available occupational exposure information. We here aim to provide a first comprehensive overview of exposure assessment tools that could be used for occupational epidemiological studies. METHODS: An online inventory was set up to collect meta-data on exposure assessment tools. Occupational health researchers were invited via newsletters, editorials, and individual e-mails to provide details of job-exposure matrices (JEMs), exposure databases, and occupational coding systems and their associated crosswalks to translate codes between different systems, with a focus on Europe. RESULTS: Meta-data on 36 general population JEMs, 11 exposure databases, and 29 occupational coding systems from more than 10 countries have been collected up to August 2021. A wide variety of exposures were covered in the JEMs on which data were entered, with dusts and fibres (in 14 JEMs) being the most common types. Fewer JEMs covered organization of work (5) and biological factors (4). Dusts and fibres were also the most common exposures included in the databases (7 out of 11), followed by solvents and pesticides (both in 6 databases). CONCLUSIONS: This inventory forms the basis for a searchable web-based database of meta-data on existing occupational exposure information, to support researchers in finding the available tools for assessing occupational exposures in their cohorts, and future efforts for harmonization of exposure assessment. This inventory remains open for further additions, to enlarge its coverage and include newly developed tools.


Assuntos
Exposição Ocupacional , Saúde Ocupacional , Poeira , Europa (Continente) , Humanos , Ocupações
8.
Environ Int ; 145: 106126, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32971416

RESUMO

Reductions of speed limits for road traffic are effective in reducing casualties, and are also increasingly promoted as an effective way to reduce noise exposure. The aim of this study was to estimate the health benefits of the implementation of 30 km/h speed limits in the city of Lausanne (136'077 inhabitants) under different scenarios addressing exposure to noise and road crashes. The study followed a standard methodology for quantitative health impact assessments to derive the number of attributable cases in relation to relevant outcomes. We compared a reference scenario (without any 30 km/h speed limits) to the current situation with partial speed limits and additional scenarios with further implementation of 30 km/h speed limits, including a whole city scenario. Compared to the reference scenario, noise reduction due to the current speed limit situation was estimated to annually prevent 1 cardiovascular death, 72 hospital admissions from cardiovascular disease, 17 incident diabetes cases, 1'127 individuals being highly annoyed and 918 individuals reporting sleep disturbances from noise. Health benefits from a reduction in road traffic crashes were less pronounced (1 severe injury and 4 minor injuries). The whole city speed reduction scenario more than doubled the annual benefits, and was the only scenario that contributed to a reduction in mortality from road traffic crashes (one death per two years). Implementing 30 km/h speed limits in a city yields health benefits due to reduction in road traffic crashes and noise exposure. We found that the benefit from noise reduction was more relevant than safety benefits.


Assuntos
Acidentes de Trânsito , Avaliação do Impacto na Saúde , Acidentes de Trânsito/prevenção & controle , Cidades , Humanos , Suíça
9.
Artigo em Inglês | MEDLINE | ID: mdl-32357482

RESUMO

Accurate exposure assessment is essential in environmental epidemiological studies. This is especially true for aircraft noise, which is characterized by a high spatial and temporal variation. We propose a method to assess individual aircraft noise exposure for a case-crossover study investigating the acute effects of aircraft noise on cardiovascular deaths. We identified all cases of cardiovascular death (24,886) occurring near Zürich airport, Switzerland, over fifteen years from the Swiss National Cohort. Outdoor noise exposure at the home address was calculated for the night preceding death and control nights using flight operations information from Zürich airport and noise footprints calculated for major aircraft types and air routes. We estimated three different noise metrics: mean sound pressure level (LAeq), maximum sound pressure level (LAmax), and number above threshold 55 dB (NAT55) for different nighttime windows. Average nighttime aircraft noise levels were 45.2 dB, 64.6 dB, and 18.5 for LAeq, LAmax, and NAT55 respectively. In this paper, we present a method to estimate individual aircraft noise exposure with high spatio-temporal resolution and a flexible choice of exposure events and metrics. This exposure assessment will be used in a case-crossover study investigating the acute effects of noise on health.


Assuntos
Aeronaves , Doenças Cardiovasculares , Ruído dos Transportes , Doenças Cardiovasculares/mortalidade , Estudos Cross-Over , Exposição Ambiental , Humanos , Suíça/epidemiologia
10.
Environ Int ; 113: 10-19, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29421397

RESUMO

We established air pollution modelling to study particle (PM10) exposures during pregnancy and infancy (1990-1993) through childhood and adolescence up to age ~15 years (1991-2008) for the Avon Longitudinal Study of Parents And Children (ALSPAC) birth cohort. For pregnancy trimesters and infancy (birth to 6 months; 7 to 12 months) we used local (ADMS-Urban) and regional/long-range (NAME-III) air pollution models, with a model constant for local, non-anthropogenic sources. For longer exposure periods (annually and the average of birth to age ~8 and to age ~15 years to coincide with relevant follow-up clinics) we assessed spatial contrasts in local sources of PM10 with a yearly-varying concentration for all background sources. We modelled PM10 (µg/m3) for 36,986 address locations over 19 years and then accounted for changes in address in calculating exposures for different periods: trimesters/infancy (n = 11,929); each year of life to age ~15 (n = 10,383). Intra-subject exposure contrasts were largest between pregnancy trimesters (5th to 95th centile: 24.4-37.3 µg/m3) and mostly related to temporal variability in regional/long-range PM10. PM10 exposures fell on average by 11.6 µg/m3 from first year of life (mean concentration = 31.2 µg/m3) to age ~15 (mean = 19.6 µg/m3), and 5.4 µg/m3 between follow-up clinics (age ~8 to age ~15). Spatial contrasts in 8-year average PM10 exposures (5th to 95th centile) were relatively low: 25.4-30.0 µg/m3 to age ~8 years and 20.7-23.9 µg/m3 from age ~8 to age ~15 years. The contribution of local sources to total PM10 was 18.5%-19.5% during pregnancy and infancy, and 14.4%-17.0% for periods leading up to follow-up clinics. Main roads within the study area contributed on average ~3.0% to total PM10 exposures in all periods; 9.5% of address locations were within 50 m of a main road. Exposure estimates will be used in a number of planned epidemiological studies.


Assuntos
Exposição Ambiental/análise , Material Particulado/análise , Adolescente , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Recém-Nascido , Estudos Longitudinais , Gravidez
11.
Environ Int ; 92-93: 202-9, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27107225

RESUMO

Robust methods to estimate historic population air pollution exposures are important tools for epidemiological studies evaluating long-term health effects. We developed land use regression (LUR) models for NO2 exposure in Great Britain for 1991 and explored whether the choice of year-specific or back-extrapolated LUR yields 1) similar LUR variables and model performance, and 2) similar national and regional address-level and small-area concentrations. We constructed two LUR models for 1991using NO2 concentrations from the diffusion tube monitoring network, one using 75% of all available measurement sites (that over-represent industrial areas), and the other using 75% of a subset of sites proportionate to population by region to study the effects of monitoring site selection bias. We compared, using the remaining (hold-out) 25% of monitoring sites, the performance of the two 1991 models with back-extrapolation of a previously published 2009 model, developed using NO2 concentrations from automatic chemiluminescence monitoring sites and predictor variables from 2006/2007. The 2009 model was back-extrapolated to 1991 using the same predictors (1990 & 1995) used to develop 1991 models. The 1991 models included industrial land use variables, not present for 2009. The hold-out performance of 1991 models (mean-squared-error-based-R(2): 0.62-0.64) was up to 8% higher and ~1µg/m(3) lower in root mean squared error than the back-extrapolated 2009 model, with best performance from the subset of sites representing population exposures. Year-specific and back-extrapolated exposures for residential addresses (n=1.338,399) and small areas (n=10.518) were very highly linearly correlated for Great Britain (r>0.83). This study suggests that year-specific model for 1991 and back-extrapolation of the 2009 LUR yield similar exposure assessment.


Assuntos
Poluentes Atmosféricos/química , Poluição do Ar/análise , Monitoramento Ambiental/métodos , Dióxido de Nitrogênio/química , Humanos , Modelos Teóricos , Análise de Regressão , Reino Unido
12.
Int J Hyg Environ Health ; 218(6): 514-21, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26003939

RESUMO

BACKGROUND: There is growing evidence that chronic exposure to transportation related noise and air pollution affects human health. However, health burden to a country of these two pollutants have been rarely compared. AIMS: As an input for external cost quantification, we estimated the cardiorespiratory health burden from transportation related noise and air pollution in Switzerland, incorporating the most recent findings related to the health effects of noise. METHODS: Spatially resolved noise and air pollution models for the year 2010 were derived for road, rail and aircraft sources. Average day-evening-night sound level (Lden) and particulate matter (PM10) were selected as indicators, and population-weighted exposures derived by transportation source. Cause-specific exposure-response functions were derived from a meta-analysis for noise and literature review for PM10. Years of life lost (YLL) were calculated using life table methods; population attributable fraction was used for deriving attributable cases for hospitalisations, respiratory illnesses, visits to general practitioners and restricted activity days. RESULTS: The mean population weighted exposure above a threshold of 48dB(A) was 8.74dB(A), 1.89dB(A) and 0.37dB(A) for road, rail and aircraft noise. Corresponding mean exposure contributions were 4.4, 0.54, 0.12µg/m(3) for PM10. We estimated that in 2010 in Switzerland transportation caused 6000 and 14,000 YLL from noise and air pollution exposure, respectively. While there were a total of 8700 cardiorespiratory hospital days attributed to air pollution exposure, estimated burden due to noise alone amounted to 22,500 hospital days. CONCLUSIONS: YLL due to transportation related pollution in Switzerland is dominated by air pollution from road traffic, whereas consequences for morbidity and indicators of quality of life are dominated by noise. In terms of total external costs the burden of noise equals that of air pollution.


Assuntos
Poluição do Ar/efeitos adversos , Exposição Ambiental/efeitos adversos , Expectativa de Vida , Ruído dos Transportes/efeitos adversos , Meios de Transporte/estatística & dados numéricos , Poluição do Ar/economia , Doenças Cardiovasculares/economia , Doenças Cardiovasculares/etiologia , Efeitos Psicossociais da Doença , Humanos , Modelos Teóricos , Ruído dos Transportes/economia , Material Particulado/toxicidade , Qualidade de Vida , Medição de Risco/estatística & dados numéricos , Suíça/epidemiologia , Meios de Transporte/métodos
13.
Environ Pollut ; 198: 201-10, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25622242

RESUMO

Air pollution levels are generally believed to be higher in deprived areas but associations are complex especially between sensitive population subgroups. We explore air pollution inequalities at national, regional and city level in England and the Netherlands comparing particulate matter (PM10) and nitrogen dioxide (NO2) concentrations and publicly available population characteristics (deprivation, ethnicity, proportion of children and elderly). We saw higher concentrations in the most deprived 20% of neighbourhoods in England (1.5 µg/m(3) higher PM10 and 4.4 µg/m(3) NO2). Concentrations in both countries were higher in neighbourhoods with >20% non-White (England: 3.0 µg/m(3) higher PM10 and 10.1 µg/m(3) NO2; the Netherlands: 1.1 µg/m(3) higher PM10 and 4.5 µg/m(3) NO2) after adjustment for urbanisation and other variables. Associations for some areas differed from the national results. Air pollution inequalities were mainly an urban problem suggesting measures to reduce environmental air pollution inequality should include a focus on city transport.


Assuntos
Poluentes Atmosféricos/análise , Poluição do Ar/estatística & dados numéricos , Exposição Ambiental/estatística & dados numéricos , Idoso , Poluição do Ar/análise , Criança , Inglaterra , Etnicidade , Feminino , Humanos , Masculino , Países Baixos , Dióxido de Nitrogênio/análise , Material Particulado/análise , Pobreza , Áreas de Pobreza , Fatores Socioeconômicos , Fatores de Tempo
14.
Int J Environ Res Public Health ; 11(12): 12652-67, 2014 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-25489999

RESUMO

The aim of this study is to investigate the relationships between road traffic noise exposure, annoyance caused by different noise sources and validated health indicators in a cohort of 1375 adults from the region of Basel, Switzerland. Road traffic noise exposure for each study participant was determined using modelling, and annoyance from various noise sources was inquired by means of a four-point Likert scale. Regression parameters from multivariable regression models for the von Zerssen score of somatic symptoms (point symptom score increase per annoyance category) showed strongest associations with annoyance from industry noise (2.36, 95% CI: 1.54, 3.17), neighbour noise (1.62, 95% CI: 1.17, 2.06) and road traffic noise (1.53, 95% CI: 1.09, 1.96). Increase in modelled noise exposure by 10 dB(A) resulted in a von Zerssen symptom score increase of 0.47 (95% CI: -0.01, 0.95) units. Subsequent structural equation modelling revealed that the association between physical noise exposure and health-related quality of life (HRQOL) is strongly mediated by annoyance and sleep disturbance. This study elucidates the complex interplay of different factors for the association between physical noise exposure and HRQOL.


Assuntos
Comorbidade , Exposição Ambiental , Ruído dos Transportes/efeitos adversos , Qualidade de Vida , Adulto , Índice de Massa Corporal , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Modelos Teóricos , Estudos Prospectivos , Transtornos do Sono-Vigília/epidemiologia , Transtornos do Sono-Vigília/etiologia , Fatores Socioeconômicos , Inquéritos e Questionários , Suíça/epidemiologia
15.
Environ Sci Technol ; 47(14): 7804-11, 2013 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-23763440

RESUMO

Modeling historic air pollution exposures is often restricted by availability of monitored concentration data. We evaluated back-extrapolation of land use regression (LUR) models for annual mean NO2 concentrations in Great Britain for up to 18 years earlier. LUR variables were created in a geographic information system (GIS) using land cover and road network data summarized within buffers, site coordinates, and altitude. Four models were developed for 2009 and 2001 using 75% of monitoring sites (in different groupings) and evaluated on the remaining 25%. Variables selected were generally stable between models. Within year, hold-out validation yielded mean-squared-error-based R(2) (MSE-R(2)) (i.e., fit around the 1:1 line) values of 0.25-0.63 and 0.51-0.65 for 2001 and 2009, respectively. Back-extrapolation was conducted for 2009 and 2001 models to 1991 and for 2009 models to 2001, adjusting to the year using two background NO2 monitoring sites. Evaluation of back-extrapolated predictions used 100% of sites from an historic national NO2 diffusion tube network (n = 451) for 1991 and 70 independent sites from automatic monitoring in 2001. Values of MSE-R(2) for back-extrapolation to 1991 were 0.42-0.45 and 0.52-0.55 for 2001 and 2009 models, respectively, but model performance varied by region. Back-extrapolation of LUR models appears valid for exposure assessment for NO2 back to 1991 for Great Britain.


Assuntos
Modelos Teóricos , Óxido Nítrico/análise , Monitoramento Ambiental , Reino Unido
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA